Stein block thresholding for wavelet-based image deconvolution
نویسندگان
چکیده
Abstract: In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov smoothness spaces, and shows that our block estimator can achieve the optimal minimax rate, or is at least nearly-minimax in the least favorable situation. The resulting algorithm is simple to implement and fast. Its computational complexity is dominated by that of the FFT. We report a simulation study to support our theoretical findings. The practical performance of our block vaguelet-wavelet deconvolution compares very favorably to existing competitors on a large set of test images.
منابع مشابه
Adaptive Parameter Selection for Block Wavelet-Thresholding Deconvolution
In this paper, we propose a data-driven block thresholding procedure for waveletbased non-blind deconvolution. The approach consists in appropriately writing the problem in the wavelet domain and then selecting both the block size and threshold parameter at each resolution level by minimizing Stein’s unbiased risk estimate. The resulting algorithm is simple to implement and fast. Numerical illu...
متن کاملAn Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملSmooth James-Stein model selection against erratic Stein unbiased risk estimate to select several regularization parameters
Smooth James-Stein thresholding-based estimators enjoy smoothness like ridge regression and perform variable selection like lasso. They have added flexibility thanks to more than one regularization parameters (like adaptive lasso), and the ability to select these parameters well thanks to a unbiased and smooth estimation of the risk. The motivation is a gravitational wave burst detection proble...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملDeconvolution by thresholding in mirror wavelet bases
The deconvolution of signals is studied with thresholding estimators that decompose signals in an orthonormal basis and threshold the resulting coefficients. A general criterion is established to choose the orthonormal basis in order to minimize the estimation risk. Wavelet bases are highly sub-optimal to restore signals and images blurred by a low-pass filter whose transfer function vanishes a...
متن کامل